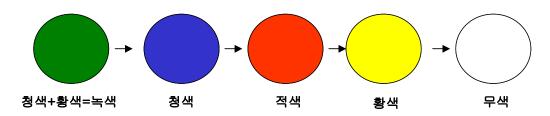
1. 변퇴색

□ 제품공급자의 대응


변퇴색은 염색물의 색상이나 농도가 변화하는 현상으로 제품의 사용시에 세탁이나 일광등 일반적인 작용에 의해서 발생할 뿐 아니라 생산과 유통과정에서도 예상할 수 없는 작용이 가해져 사고가 발생하는 경우가 많으므로 가해작용과 사고현상의 인과관계를 화학, 물리화학등의 관점에서 이해하고 적절히 대응하는 것은 매우 중 요함.

□ 변퇴색의 현상과 발생 메커니즘

퇴색: 염료분자의 분해적 화학변화로서 그 원인에는 산화분해와 환원분해가 있음.

○ 녹색 염색물의 산화분해에 의한 퇴색과정

- ① 청색과 황색의 혼합염료로 염색한 녹색 염색물
- ② 황색의 염료가 산화분해되어 무색으로 되어 청색만 남음.
- ③ 청색의 염료가 산화분해되기 시작하여 적색으로 퇴색함.
- ④ 산화분해가 계속되면 적색에서 황색으로 그리고 무색으로 변화됨.

<그림 1-1> 염료의 산화분해로 인한 퇴색과정의 예

• 소비자 사용시에 일어나는 퇴색사고는 대부분 산화분해임.

1.1 산화분해

○ **산화분해 요인 :** 산화표백제, 일광, 대기 중 NO₂ 등

○ 사고현상 분포 관찰과 원인해석 과정

- 대기 접촉부위와의 일치 : NO₂가스 검출시험 → 그리스 시약
- 일광에 노출된 부위와 일치 : 일광산화(일광에 노출된 부위와 이면에 정도차가

큼) → 일광견뢰도 시험

• 세탁시 산화계표백제(차아염소산나트륨 함유) 사용시 : 면, 나일론 등은 섬유 고 분자의 산화흔적을 검출하는 시험 → 하리손, 펠링, 텀블블루, 닌히드린, 로다민 B시험 등이 있음.

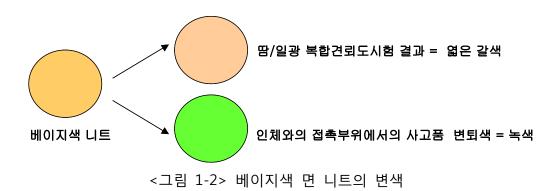
<표 1-1> 산화분해 시험법과 결과

섬유	시험방법	정상부	산화된 부분
면	하리손 시험	발색없음	갈색-흑색으로 발색
레이온	턴블블루 시험	발색없음	청색으로 염색
나일론	키톤 레드 G 가열 시험	농색으로 염색	담색으로 염색
	닌히드린 시험	자주색으로 발색	연한 자주색으로 발색 또는 발색하지 않음
양모	키톤 레드 G 상온 시험	염색되지 않음	염색됨

• 리조트 호텔의 수영장과 개방상태로 인접한 복도나 방의 청색계통의 나일론 카

펫이 핑크색의 퇴색 → 수영장물에 함유된 차아염소산에 의해 나일론 카펫의 핑크색 염료가 산화퇴색함.

• 염색공장의 창고에 보관중인 반응성 청색염료 염색 면포가 주름을 따라 공기와 접촉된 부위에서 적색으로 퇴색 → 공장내부의 NO₂가스에 의한 퇴색


1.2 환원분해

○ 환원분해 요인

셀룰로스 산화 및 가수분해로 인한 알데히드기, 골판지, 양모, 우모 등에서 발생하는 황화수소, 환원계표백제 등

ㅇ 사례

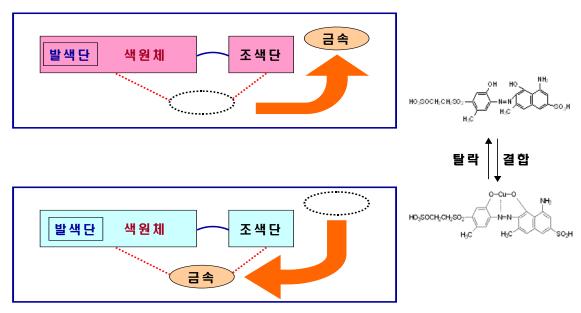
• 사고내용 : 베이지색 면 니트의 염색에 사용된 염료가 적색, 청색, 황색의 직접 염료로 사용중 녹색으로 변색됨.

• 워인분석

- 땀시험 결과에서는 퇴색 없음.
- 땀/일광 복합견뢰도 시험결과에서의 변퇴색은 엷은 갈색
- 하리손 시험결과 면섬유에서 알데히드기 다량 검출
- 사용된 염료중 적색염료가 환원작용에 의해 무색으로 변퇴됨.

• 원인추정

- 염색과정에서 면 니트의 과표백으로 면의 산화작용에 의해 생성된 알데히드 기에 의해 제품단계에서 환원퇴색한 경우
- 과도한 습기가 있는 곳에서 장시간 사용시 면섬유의 가수분해에 의해 생성된 알데히드기에 의해 환원퇴색한 경우


1.3 함금 염료에서의 금속탈락 및 금속과의 킬레이트 생성

○ 금속탈락 및 금속과의 킬레이트 형성 요인

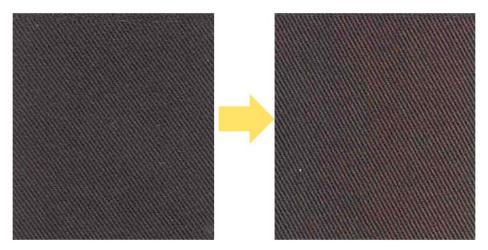
• 땀에 포함된 히스티딘에 의한 염료내 금속탈락으로 인한 퇴색, 불소계 고착제의 불화수소산 유리로 인한 불화동(銅) 형성 등

○ 사고현상 분포 관찰과 원인해석 과정

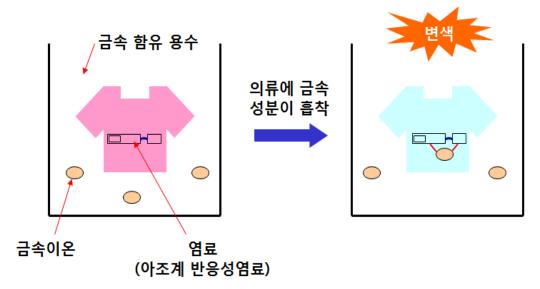
- 반응염료로 염색된 적색의 티셔츠에 목걸이를 착용하고 있을 때 목걸이와의 접촉부위가 청색으로 퇴색 → 목걸이 금속성분 분석, 변색부위에서 동(銅)검출시험
- 불소계 고착제가 사용된 양모사로 자수된 녹색 면 니트에서 자수와 접촉부분에 서 적갈색으로 퇴색 → 면에 사용된 염료의 타입이 함동타입임을 감안하여 금속 이탈에 따른 변퇴색 확인, 불화수소산 검출시험
- 원인추정 : 양모사에 사용된 불소계 고착제로부터 불화수소산이 유리하여 면 니트의 함동타입 반응성염료의 동과 불화동 형태로 반응하여 금속이 이탈되어 나타난 사고

<그림 1-3> 염료내 금속의 탈락과 킬레이트형성과정

1.4 무기염과 관련된 변색사고


- 지하수를 사용하여 양모색 및 흑색으로 변색됨.
 - → 묽은 염산으로 처리하여 스웨터사를 정련한 경우
 - → 스웨터에 지하수의 철분이 다량 흡착되고 판매중 일광노출에 의해 철분이

산화되어 산화철로 변화되어 감.


○ 사고현상 분포 관찰과 원인해석 과정

- 스웨터 전체에서 다량의 철분 흡착이 인지됨.
- 묽은 염산처리로 용이하게 제거할 수 있음.
- 또한 철분을 제거한 제품에 일광을 쪼여도 변색되지 않음.
- 원인추정 : 양모가 정련공정에서 사용된 수중의 철이온을 흡착하고, 빛에 노출 된 부분에서 흡착된 철이온이 산화철로 되었기 때문으로 추정
- 대책 : 지하수는 겉보기는 아주 깨끗하지만, 다량의 무기물을 포함하고 있는 경 우가 많으므로 가공시에는 수질체크가 중요함.
 - ① 가공공정에서의 철이온 흡착 Wool - COO TH + Fe + Wool - COO Fe + (이 상태에서는 무색)
 - ② 일광에 노출된 부분에서의 반응메커니즘 Wool - $COO^-Fe^+ + O + H_2O$

➡ Wool - COO H + + Fe₂O₃ (흑색의 고체)

<그림 1-4> 수돗물에 의한 면직물 퇴색 (좌 : 정상부분, 우 : 이상부분)

<그림 1-5> 용수와 관련된 변색

ㅇ 사례

- 산성염료 청색, 회색 및 연두색으로 염색한 여름용 신사복에서 피부와 접촉하는 목덜미와 소매부가 빨갛게 퇴색한 경우
 - → 땀시험에서 4급, 땀/일광 복합견뢰도 시험은 2급, 그러나 사고품의 색상과 상이하였음.
 - → 해수견뢰도 시험결과에서 사고품과 유사한 변퇴색 확인
 - → 원인추정 : 변퇴색이 발견된 부위에서 고농도의 염분이 석출, 세탁 후 어느 정도 복색 되는 것으로 보아 고농도의 염분으로 인한 색상변화로 추정됨.

1.5 물리적 작용

염색원단의 직·편물구조, 섬유의 표면상태 변화 등으로 빛의 반사형태가 변화되어 다른 상태로 보이는 변색사고

- 천을 대지 않고 다림질할 경우 희끗거리는 광택
- 기름 묻은 부분이 젖은 효과로 인해 진하게 보이는 현상
- 물방울 얼룩(워터 스폿)
- 수축률이 다른 교편직물인 경우 물방울이 튀거나 부분적으로 젖을 경우 수축차로 인한 표면상태 변화로 빛의 반사가 달라져 이색으로 보임.
- 직 · 편물 표면의 잔류 가공제가 수분의 이동 경로에 따라 물방울 형태로 자국을 형성하여 얼룩형태로 보임.

1.6 오염

형광염료가 함유된 가정용 세제를 세탁시 과잉투입하거나 세탁물에 직접 뿌리는 경우 흰색 또는 황색 오염형태로 관찰되는 변색사고

- 베이지색 면바지 세탁 후 흰색 오염발생, 나일론 속옷의 손세탁 후 황색오염 발 생의 경우 블랙라이트 관찰시 오염부위에서 강한 형광이 관찰됨.
- → 형광염료가 함유된 가정용 세제를 세탁시 과잉투입하거나 세탁물에 직접 접 촉하게 투입하여 과잉의 형광염료가 부착되어 발생된 사고로 추정
- → 형광염료는 양이온계이며, 세탁물은 수중에서 표면전위가 대부분 (-)로 하전되 어 형광염료가 흡착되기 쉬움.