가

1. 가 가

.

가 가 .

가 5가 .

,

가 . ,

, ,

. ,

. , 가

.

가

· , ,

가 , , 가 , , 가 .

, . 가 가

,

.

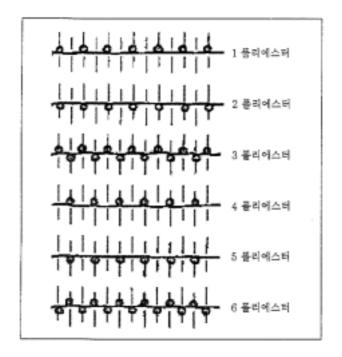
가 (thermal wear comfort) .

. (heat permeality)

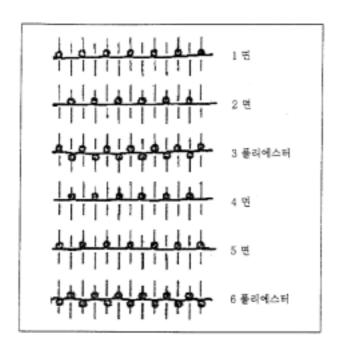
, , ,

, , (air volume rate)

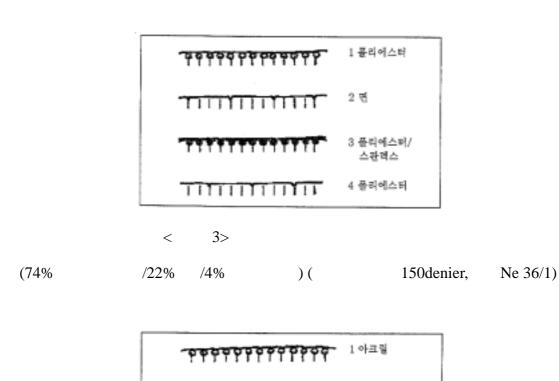
•

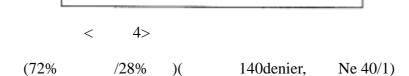

가 .

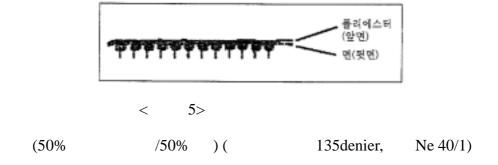
가 가 . Anand Silva (thermal insulation) 가 가 가 가 . Li Yi 가 가 가 Adler, Yanma Meifang Shigahi, Niki, Nakanishi Nakajima 가 가 가


< 1>~< 5>

2.


2.1




< 1> (100% , 100denier)

< 2>
(50% /50%)(70denier, Ne 60/1)

2.2

10

ISO 5084 James H. Heal R&R

. ISO 9237 Tex-Test FX 300

. ASTM D 4966 Martindale

20,000

20,000

. %

ISO 13938-1:99

3.

SPSS

가 .

2>~< 4> . 95% 5

< 1>

평성 구조	변환 밀도	원단 두께 공기 투과도(I/m²/s)		도(//㎡/동)	파엘 강도(kg/급)		마모을(무게 감소 %, g)	
4914	(편환수/여)	(mm)	평균	표준 편차	병군	표준 편차	평균	표준 편차
인터록 피케	222.2	0.66	1303.0	27.91	13,92	0.270	0.2830	0,1426
(100% PET)	200,0	0,00	1303,0	21,01	10,02	0,270	0.2000	0,1410
인터록 피케	158.8	0.51	1057.8	48,94	6,01	0.233	0.4920	0.0909
(48%PET/52%cotton)	100.0	0.01	1001.0	40.54	0,01	0,200	0,4020	0.0000
플리스								
(74%PET/22%cotton	299,9	1,00	485.2	23.91	9.25	0.532	2,4020	0,3363
/4%lycra)								
플리스	359.3	1,01	333.3	18.40	11.14	0.158	0.8600	0.1078
(72%PA/28%cotton)	000.0	1,01	000,0	20,40		0,100	0,000	0.1010
싱글 저지	305.2	0.64	439.2	27.68	8,61	0.110	0.1230	0.0948
(50%PET/50%cotton)	000.5	0.04	100.6	27.00	0.01	0.110	0,2200	0,0040

< 5> .

99%

"**", 95%

··**

< 2>

변동 원인	제곱값의 합	자유도	평균 제곱값	F
편성 구조	33,854	4	8,463	260,727
Error	1.461	45	0,03246	
총계	35,314	49		

< 3>

변동 원인	제곱값의 합	자유도	평균 제곱값	F
편성 구조	348.517	4	87,129	974.601
Error	4.023	45	0.08940	
총계	352,540	49		

< 4>

변동 원인	제곱값의 합	자유도	평균 제곱값	F
편성 구조	7374459.60	4	1843614.90	1900,42
Error	43654,900	45	970,109	
총계	7418114,50	49		

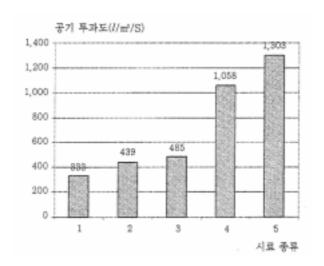
< 5>

	면환 밀도	원단 두께	공기 투파도	마모율	파열 강도
편환 밀도	1,000	0,810**	-0.863**	0.300*	0,304*
원단 두제	0.810**	1.000	-0.677**	0.708*	0,318*
공기 루파도	-0.863**	-0,677**	1,000	-0.383**	0,209
마모을	0.300*	0.708**	-0.383**	1.000	-0.088
파열 강도	0.304*	0.318*	0.209	-0.088	1,000

3.1 < 6> . < 6>

가 .

·


,

. 100% 가 .

가

1 가 . 가 , , 가

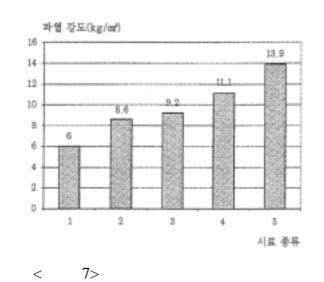
가 .

< 6>

3.2

< 7> , 100%

가 가 , 48% /52 %


가 100%

가 가 ,

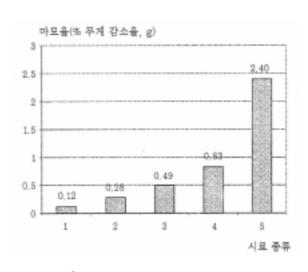
100% 48% /52 % 5 1 가

가

가 . 가

3.3

가 20,000 < g 8> 가 5 4


가 (%)

. 가

가

, (needle bed)

가 가 .

< 8>

4. (,

) 가

가 . 100%

가 가 .

가 가 .

가 .

. , 100%

가 48% PET/52 % 가

•

가 .

가 .

(Certain physical properties of knitted structures used for active sportswear : Melliand International, 2004. No.3)