소면기의 리커-인 속도가 사 품질에 미치는 영향

1. 서언

리커-인(licker-in)은 소면공정에서 강렬한 개면과 정면을 수행한다. 리커-인이 한 개인 소면기에서는 전 체 섬유의 50 % 이상이 작은 덩어리 형태로 메인 실린 더의 표면을 따라서 이송되고, 50 % 미만은 개개의 섬 유로 개면된다. 따라서 리커-인에 의한 처리는 매우 강 렬하게 발생하기 때문에 부드러운 처리가 되지 못한다.

리커-인에 의한 개면은 공급 랩을 '쐐기꼴 모양으로 뜯어내는 것을 포함한다. 여기서 '쐐기꼴 모양이란 리 커-인이 섬유를 뜯어냄에 따라 파지점에서 돌출되어 나온 섬유들이 연속적으로 엷어지면서 쐐기꼴(wedge) 형태를 갖는 것을 의미한다. 개면의 형태와 강도는 최 종 방적사의 넵, 사 결점, 균제도 및 강력에 영향을 미 친다.

2. 원료 및 실험 방법

(1) 원료

면섬유 샘플은 랜덤 샘플링법에 의해 이송 중인 원료 로부터 수집하여, AFIS 시험기로 시험하였다. 샘플링 한 면섬유의 물성은 〈표 1〉과 같다.

〈표 1〉 면섬유 물성

2.5 % 스팬 섬유장 (mm)	32,85
강력 (g/tex)	24.9
신도 (%)	7.3
마이크로네어	4.19
단섬유 지수	6.3
반사율 (Rd)	78.2
황색도 (+b)	8.6

(2) 실험 방법

면섬유 샘플은 랜덤 샘플링법에 의해 리커-인 속도 1,000 rpm에서 소면기에 공급 및 방출된 원료로부터 수집하였으며, AFIS 시험기로 시험하였다. AFIS 시험 기를 이용하여 공급 및 방출 원료에 대한 섬유의 손상, 넵 제거 효율 및 결점 지수를 분석하였고, 소면기의 정 면 효율은 트래시 분석을 통해 분석하였다.

〈표 2〉와 같이 원료는 일정한 방적 조건 및 공정을 통해 이송되었으며, 링 정방기로 제조된 방적사는 Uster Tester 5로 시험하였다. 본 실험에서는 사 결점, 잔털 및 단사 강력을 측정하였다. 동일한 공정조건에서 리커-인 속도를 1,200 및 1,400 rpm으로 변경하여 실험한 후 모든 실험 결과를 비교하였다.

(3) 공정 인자

공정 인자는 〈표 2〉에 나타내었다.

3. 결과 및 고찰

〈그림 1〉과 같이 리커-인 속도가 1,000 ~ 1,400 rpm으로 증가함에 따라서 섬유의 손상도 증가되었다. 이는 리커-인 속도가 증가함에 따라서 매우 강렬한 타 면 작용(beating action)이 면섬유에 작용하였기 때문 이다. 섬유의 손상은 원료에서 단섬유 함유율을 증가시 키고, 섬유장을 감소시키며, 사 물성에 직접적으로 영 향을 미친다. 〈그림 2〉와 같이 리커-인 속도가 1,000 ~ 1,400 rpm으로 증가함에 따라서 면섬유에 더 많은 개면 작용이 이루어져서 전반적으로 정면 효율(%)이 증 가되었다. 또한 리커-인 속도의 증가는 면섬유에 더 많 은 타면 작용을 발생시켜서 소면기의 정면 효율을 향상 시킨다. 속도가 증가함에 따라서 넵 제거 효율은 특정 한 계까지는 증가하지만, 그 이상의 속도에서는 감소된다.

〈표 2〉 공정 인자

유니플록(Unifloc) Rieter A11	돌출부 깊이 (mm)	4	- 정소면기 - Rieter E65	슬라이버 행크	0.105
	개섬 롤러 속도 (rpm)	1,600		노일 (%)	18.50
	트래버스 속도 (m/분)	16		닙핑 (회/분)	457
정면기(Uniclean) Rieter B11	정면도	0.7		공급 모드	전진
	위이어 크스이야	10		브레이크 드래프트	1.67
	비터 속도 (m/분)	780		공급 (닙/분)	4.7
정면기(Uniflex) Rieter B620	비터 타입	톱니		톱콤 침투 깊이 (mm)	0.1
	정면도	0.5		드로우박스 게이지 (mm)	48/54
	원이에 크스이아	10		코일러 트럼펫 (mm)	4.4
	비터 속도 (m/분)	710		슬라이버 행크	0.0965
소면기 Rieter C60	슬라이버 행크	0.07	피니셔 연조기 Rieter D35	더블링 수	6
	생산량 (kg/h)	65		딜리버리 속도 (m/분)	460
	닙핑 거리 (mm)	21		총 드래프트	6.02
	실린더 속도 (rpm)	910		보텀 롤러 게이지 (mm)	42/46
	리커—인 속도 (rpm)	1,000		웹 텐션 드래프트	0.99
	플랫 속도 (m/분)	0.39		브레이크 드래프트	1.16
	공급롤러/리커인 게이지 (mm)	0.9		트럼펫 (mm)	3.8
	실린더/플랫 게이지 (mm)	0.3	조방기 Zinser 681	로빙 행크	0.7
	실린더/도퍼 게이지 (mm)	0.25		TPI	1.13
	공급 중량 (g/m)	700		TM	1.35
	개섬 롤러 (rpm)	835		스페이서	노랑
	텐션 드래프트	1.63		보텀 롤러 게이지 (mm)	49/60
예비 연조기 Rieter SB D15	슬라이버 행크	0.115		브레이크 드래프트	1.19
	딜리버리 속도 (m/분)	754		인렛(Inlet) 콘덴서	빨강
	더블링 수	6		플로팅(Floating) 콘덴서	빨강
	브레이크 드래프트	1.41	링 정방기 KTTM	번수	Ne30
	보텀 롤러 게이지 (mm)	42/46		TPI	20.79
정소면 준비기 Rieter E32	랩 중량 (g/m)	74		TM	3.65
	더블링 수	23		스페이서 (mm)	2.5
	보텀 롤러 게이지 (mm)	44/46		보텀 롤러 게이지 (mm)	44/60
	브레이크 드래프트	1.062		브레이크 드래프트	1.2
	메인 드래프트	1.52			•
	랩 롤러 드래프트	0.5588			
	캘린더 롤러 드래프트	1.009			
	테이블 캘린더 드래프트	1.019			
	총 드래프트	1.57			

Fiber rupture% : 섬유의 손상 (%), Licker-in speed : 리커-인 속도

Licker-in speed : 리커-인 속도

〈그림 3〉과 같이 리커-인 속도가 1,000 ~ 1,400 rpm으로 증가함에 따라서 소면 슬라이버의 불균제도 (U %)는 증가되었다. 리커-인 속도의 증가는 섬유를 손상시키는데, 이는 단섬유 함유율을 증가시키며, 이러 한 단섬유는 슬라이버의 불균제도에 직접적으로 영향을 미친다. 한편 단섬유가 플랫의 웨이스트로 제거될 때 최적 리커-인 속도에서 소면 슬라이버의 불균제도는 향상된다.

〈그림 4〉와 같이 예비 연조 슬라이버의 불균제도(U %)는 감소되었다. 예비 연조기의 주요 역할은 슬라이버 더블링을 통해 불균제도를 감소시키는 것으로, 슬라이 버 6 더블링으로 인해 예비 연조기에서 불균제도는 감 소되었다.

BDF Sliver U% : 예비 연조 슬라이버의 불균제도 (U %), Licker--in speed : 리커--인 속도

〈그림 5〉와 같이 정소면 슬라이버의 불균제도(U %) 는 감소되었다. 정소면 공정은 노일의 형태로 단섬유를 제거한다. 본 연구에서는 18.5 %의 노일이 정소면기로 인해 제거되었고, 정소면 공정에서 정소면된 슬라이버 6가닥이 더블링되어 정소면 슬라이버의 불균제도를 향 상시켰다.

소면기의 리커-인 속도가 사 품질에 미치는 영향

Comber U % : 정소면 슬라이버의 불균제도 (U %), Licker--in speed : 리커-인 속도

〈그림 6〉과 같이 피니셔 연조 슬라이버의 불균제도 (U %)는 감소되었다. 피니셔 연조기의 주요 역할은 슬 라이버의 더블링과 오토레블링에 의해 불균제도를 감소 시키는 것이다. 따라서 피니셔 연조기에서 불균제도가 크게 감소되었다. 〈그림 7〉과 같이 링 정방 보빈에서 링 방적사의 불균제도(U %)는 감소되었다. 불균제도는 전방 공정과 동일한 순서로 링 방적사에서 발생한다. 리커-인 속도가 증가할수록 원료 및 그 원료로 생산된 방적사에서 불균제도가 증가한다.

FDF U% : 피니셔 연조 슬라이버의 불균제도 (U%), Licker-in speed : 리커-인 속도

Ring frame U% : 링 방적사의 불균제도 (U%), Licker-in speed : 리커-인 속도

〈그림 8〉과 같이 링 정방 보빈에서 링 방적사의 사 결점 지수는 고속 리커-인에서 증가되었다. 단섬유는 사 결점 지수에 직접적으로 영향을 미친다. 리커-인 속 도가 증가할 때 고속 리커-인에서의 섬유 손상은 사 결 점 지수를 증가시킨다.

IPI : 사 결점 지수 (IPI), Licker-in speed : 리커-인 속도

〈그림 9〉와 같이 링 정방기의 비강도(RKM)는 리커 -인 속도가 증가함에 따라서 감소되었다. 고속에서 손 상된 섬유로 인해 단섬유가 많이 발생하며, 증가된 단 섬유는 실의 비강도를 감소시킨다.

RKM : 비강도 (RKM), Licker-in speed : 리커-인 속도

〈그림 10〉과 같이 링 방적사의 잔털은 리커-인 속 도가 증가함에 따라서 증가되었다. 고속에서 손상된 섬 유로 인해 단섬유가 많이 발생하며, 방적사에서 증가된 단섬유는 돌출된 섬유를 증가시켜서 잔털이 증가된다.

Hairiness : 사 잔털, Licker-in speed : 리커-인 속도

4. 결언

본 연구에서는 최적의 슬라이버 품질을 도출하였고, 소면기의 리커-인 속도에 대한 효과를 분석하기 위해 서 방적사 단계까지 동일한 품질을 유지시켰다. 소면 공정에서 리커-인 속도가 1,000 rpm, 1,200 rpm, 1,400 rpm으로 증가함에 따라서 강렬한 개면 및 정면 이 이루어졌고, 슬라이버 단계에서는 소면의 넵 제거 효율이 향상되었지만, 동시에 섬유의 손상이 증가되었 다. 섬유의 손상은 소면 슬라이버 내에서 단섬유 함유 율을 증가시켜서 소면 슬라이버의 불균제도를 증가시키 며, 이러한 불균제도는 연조기와 정소면기에서 각각 더 블링과 노일 제거로 인해 감소된다. 또한 단섬유는 링 방적사의 불균제도, 사 결점 지수, 단사 강력 및 잔털에 영향을 미친다.

Melliand International 4/2017